Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Journal of Drug Delivery Science and Technology ; 74 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2267490

ABSTRACT

Over the past decade, compared to all other macromolecules lipid-based nanocarriers have proven to be an excellent carrier and delivery system for various pharmaceutical drugs of poor bioavailability. In addition to that, they exhibit exceptional qualities such as minimal toxicity, economical scale-up production, great biocompatibility, and high drug loading efficiency. In this study, we have discussed the various types of lipid nanoparticles, such as liposomes, nanostructured lipid carriers, solid lipid nanoparticles, and lipid polymer hybrid nanoparticles. We have also conferred in detail, the composition, shape and size, methods of preparation, advantages, and certain limitations associated with these lipid-based nanocarriers. Additionally, we have exclusively accounted for several examples of lipid-based nanomedicines that have either been approved and commercialized or are under the different phases of clinical trials. The current review overall focuses on the up-to-date research that has recently been published in view of developing lipid-based nanocarriers for various biological applications, including gene therapy, breast cancer therapy, and vaccine development.Copyright © 2022

2.
Expert Rev Clin Pharmacol ; 15(11): 1327-1341, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2247914

ABSTRACT

INTRODUCTION: Small interfering RNA (siRNA) has emerged as a powerful tool for post-transcriptional downregulation of multiple genes for various therapies. Naked siRNA molecules are surrounded by several barriers that tackle their optimum delivery to target tissues such as limited cellular uptake, short circulation time, degradation by endonucleases, glomerular filtration, and capturing by the reticuloendothelial system (RES). AREAS COVERED: This review provides insights into studies that investigate various siRNA-based therapies, focusing on the mechanism, delivery strategies, bioavailability, pharmacokinetic, and pharmacodynamics of naked and modified siRNA molecules. The clinical pharmacology of currently approved siRNA products is also discussed. EXPERT OPINION: Few siRNA-based products have been approved recently by the Food and Drug Administration (FDA) and other regulatory agencies after approximately 20 years following its discovery due to the associated limitations. The absorption, distribution, metabolism, and excretion of siRNA therapeutics are highly restricted by several obstacles, resulting in rapid clearance of siRNA-based therapeutic products from systemic circulation before reaching the cytosol of targeted cells. The siRNA therapeutics however are very promising in many diseases, including gene therapy and SARS-COV-2 viral infection. The design of suitable delivery vehicles and developing strategies toward better pharmacokinetic parameters may solve the challenges of siRNA therapies.


Subject(s)
COVID-19 , Humans , RNA, Small Interfering/pharmacology , COVID-19/therapy , SARS-CoV-2 , Genetic Therapy
3.
Vaccines (Basel) ; 10(9)2022 Sep 17.
Article in English | MEDLINE | ID: covidwho-2041171

ABSTRACT

Clay materials and nanoclays have gained recent popularity in the vaccinology field, with biocompatibility, simple functionalization, low toxicity, and low-cost as their main attributes. As elements of nanovaccines, halloysite nanotubes (natural), layered double hydroxides and hectorite (synthetic) are the nanoclays that have advanced into the vaccinology field. Until now, only physisorption has been used to modify the surface of nanoclays with antigens, adjuvants, and/or ligands to create nanovaccines. Protocols to covalently attach these molecules have not been developed with nanoclays, only procedures to develop adsorbents based on nanoclays that could be extended to develop nanovaccine conjugates. In this review, we describe the approaches evaluated on different nanovaccine candidates reported in articles, the immunological results obtained with them and the most advanced approaches in the preclinical field, while describing the nanomaterial itself. In addition, complex systems that use nanoclays were included and described. The safety of nanoclays as carriers is an important key fact to determine their true potential as nanovaccine candidates in humans. Here, we present the evaluations reported in this field. Finally, we point out the perspectives in the development of vaccine prototypes using nanoclays as antigen carriers.

4.
Front Bioeng Biotechnol ; 10: 922772, 2022.
Article in English | MEDLINE | ID: covidwho-1924069

ABSTRACT

LFIA is one of the most successful analytical methods for various target molecules detection. As a recent example, LFIA tests have played an important role in mitigating the effects of the global pandemic with SARS-COV-2, due to their ability to rapidly detect infected individuals and stop further spreading of the virus. For this reason, researchers around the world have done tremendous efforts to improve their sensibility and specificity. The development of LFIA has many sensitive steps, but some of the most important ones are choosing the proper labeling probes, the functionalization method and the conjugation process. There are a series of labeling probes described in the specialized literature, such as gold nanoparticles (GNP), latex particles (LP), magnetic nanoparticles (MNP), quantum dots (QDs) and more recently carbon, silica and europium nanoparticles. The current review aims to present some of the most recent and promising methods for the functionalization of the labeling probes and the conjugation with biomolecules, such as antibodies and antigens. The last chapter is dedicated to a selection of conjugation protocols, applicable to various types of nanoparticles (GNPs, QDs, magnetic nanoparticles, carbon nanoparticles, silica and europium nanoparticles).

5.
Biophys Chem ; 265: 106441, 2020 10.
Article in English | MEDLINE | ID: covidwho-1343142

ABSTRACT

The possibility of immobilizing a protein with antigenic properties on a solid support offers significant possibilities in the development of immunosensors and vaccine formulations. For both applications, the orientation of the antigen should ensure ready accessibility of the antibodies to the epitope. However, an experimental assessment of the orientational preferences necessarily proceeds through the preparation/isolation of the antigen, the immobilization on different surfaces and one or more biophysical characterization steps. To predict a priori whether favorable orientations can be achieved or not would allow one to select the most promising experimental routes, partly mitigating the time cost towards the final product. In this manuscript, we apply a simple computational model, based on united-residue modelling, to the prediction of the orientation of the receptor binding domain of the SARS-CoV-2 spike protein on surfaces commonly used in lateral-flow devices. These calculations can account for the experimental observation that direct immobilization on gold gives sufficient exposure of the epitope to obtain a response in immunochemical assays.


Subject(s)
Betacoronavirus/metabolism , Epitopes/chemistry , Models, Molecular , Spike Glycoprotein, Coronavirus/metabolism , Antigens/chemistry , Antigens/immunology , Antigens/metabolism , Epitopes/immunology , Molecular Docking Simulation , Protein Domains , SARS-CoV-2 , Silicon Dioxide/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Surface Properties
6.
Molecules ; 26(5)2021 Mar 09.
Article in English | MEDLINE | ID: covidwho-1143538

ABSTRACT

Bioconjugation has allowed scientists to combine multiple functional elements into one biological or biochemical unit. This assembly can result in the production of constructs that are targeted to a specific site or cell type in order to enhance the response to, or activity of, the conjugated moiety. In the case of cancer treatments, selectively targeting chemotherapies to the cells of interest limit harmful side effects and enhance efficacy. Targeting through conjugation is also advantageous in delivering treatments to difficult-to-reach tissues, such as the brain or infections deep in the lung. Bacterial infections can be more selectively treated by conjugating antibiotics to microbe-specific entities; helping to avoid antibiotic resistance across commensal bacterial species. In the case of vaccine development, conjugation is used to enhance efficacy without compromising safety. In this work, we will review the previously mentioned areas in which bioconjugation has created new possibilities and advanced treatments.


Subject(s)
Drug Delivery Systems/methods , Nanoparticles/therapeutic use , Estrogens, Conjugated (USP)/history , Estrogens, Conjugated (USP)/pharmacology , History, 20th Century , History, 21st Century , Humans , Immunoconjugates/history , Immunoconjugates/pharmacology , Nanoparticles/chemistry , Pharmaceutical Preparations , Vaccines, Conjugate/history , Vaccines, Conjugate/pharmacology
7.
Angew Chem Int Ed Engl ; 60(1): 321-330, 2021 01 04.
Article in English | MEDLINE | ID: covidwho-891871

ABSTRACT

Matching of symmetry at interfaces is a fundamental obstacle in molecular assembly. Virus-like particles (VLPs) are important vaccine platforms against pathogenic threats, including Covid-19. However, symmetry mismatch can prohibit vaccine nanoassembly. We established an approach for coupling VLPs to diverse antigen symmetries. SpyCatcher003 enabled efficient VLP conjugation and extreme thermal resilience. Many people had pre-existing antibodies to SpyTag:SpyCatcher but less to the 003 variants. We coupled the computer-designed VLP not only to monomers (SARS-CoV-2) but also to cyclic dimers (Newcastle disease, Lyme disease), trimers (influenza hemagglutinins), and tetramers (influenza neuraminidases). Even an antigen with dihedral symmetry could be displayed. For the global challenge of influenza, SpyTag-mediated display of trimer and tetramer antigens strongly induced neutralizing antibodies. SpyCatcher003 conjugation enables nanodisplay of diverse symmetries towards generation of potent vaccines.


Subject(s)
COVID-19 Vaccines/chemistry , Nanostructures/chemistry , Vaccines, Virus-Like Particle/chemistry , Antibodies, Neutralizing/analysis , Antibodies, Viral , Antigens, Viral/chemistry , Antigens, Viral/immunology , Freezing , Humans , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL